Nop53p is a novel nucleolar 60S ribosomal subunit biogenesis protein.

نویسندگان

  • Yaroslav Sydorskyy
  • David J Dilworth
  • Brendan Halloran
  • Eugene C Yi
  • Taras Makhnevych
  • Richard W Wozniak
  • John D Aitchison
چکیده

Ribosome biogenesis in Saccharomyces cerevisiae occurs primarily in a specialized nuclear compartment termed the nucleolus within which the rRNA genes are transcribed by RNA polymerase I into a large 35 S rRNA precursor. The ensuing association/dissociation and catalytic activity of numerous trans-acting protein factors, RNAs and ribosomal proteins ultimately leads to the maturation of the precursor rRNAs into 25, 5.8 and 18 S rRNAs and the formation of mature cytoplasmic 40 and 60 S ribosomal subunits. Although many components involved in ribosome biogenesis have been identified, our understanding of this essential cellular process remains limited. In the present study we demonstrate a crucial role for the previously uncharacterized nucleolar protein Nop53p (Ypl146p) in ribosome biogenesis. Specifically, Nop53p appears to be most important for biogenesis of the 60 S subunit. It physically interacts with rRNA processing factors, notably Cbf5p and Nop2p, and co-fractionates specifically with pre-60 S particles on sucrose gradients. Deletion or mutations within NOP53 cause significant growth defects and display significant 60 S subunit deficiencies, an imbalance in the 40 S:60 S ratio, as revealed by polysome profiling, and defects in progression beyond the 27 S stage of 25 S rRNA maturation during 60 S biogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explorer Nop 53 p is required for late 60 S ribosome subunit maturation and nuclear export in yeast

We report that Ypl146cp/Nop53p is associated with pre-60S ribosomal complexes and localized to the nucleolus and nucleoplasm. In cells depleted of Nop53p synthesis of the rRNA components of the 60S ribosomal subunit is severely inhibited, with strikingly strong accumulation of the 7S pre-rRNA and a 50 extended form of the 25S rRNA. In cells depleted of Nop53p pre-60S subunits accumulate in the ...

متن کامل

The nucleolar GTPase nucleostemin-like 1 plays a role in plant growth and senescence by modulating ribosome biogenesis

Nucleostemin is a nucleolar GTP-binding protein that is involved in stem cell proliferation, embryonic development, and ribosome biogenesis in mammals. Plant nucleostemin-like 1 (NSN1) plays a role in embryogenesis, and apical and floral meristem development. In this study, a nucleolar function of NSN1 in the regulation of ribosome biogenesis was identified. Green fluorescent protein (GFP)-fuse...

متن کامل

LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis

The coordination of RNA polymerase I transcription with pre-rRNA processing, preribosomal particle assembly, and nuclear export is a finely tuned process requiring the concerted actions of a number of accessory factors. However, the exact functions of some of these proteins and how they assemble in subcomplexes remain poorly defined. LAS1L was first described as a nucleolar protein required for...

متن کامل

Functional redundancy of yeast proteins Reh1 and Rei1 in cytoplasmic 60S subunit maturation.

The biogenesis of the large (60S) ribosomal subunit in eukaryotes involves nucleolar, nucleoplasmic, and cytoplasmic steps. The cytoplasmic protein Rei1, found in all eukaryotes, was previously shown to be necessary for the nuclear reimport of 60S subunit export factor Arx1. In this study we investigate the function of Reh1, a protein with high sequence similarity to Rei1. We demonstrate an ove...

متن کامل

Spb1p is a putative methyltransferase required for 60S ribosomal subunit biogenesis in Saccharomyces cerevisiae.

Several mutants ( spb1 - spb7 ) have been previously identified as cold-sensitive extragenic suppressors of loss-of-function mutations in the poly(A)(+)-binding protein 1 of Saccharomyces cerevisiae. Cloning, sequence and disruption analyses revealed that SPB1 (YCL054W) encodes an essential putative S -adenosylmethionine-dependent methyltransferase. Polysome analyses showed an under-accumulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 388 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2005